Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18.

نویسندگان

  • Qiaolin Zheng
  • Sharyn E Perry
چکیده

Somatic embryogenesis (SE) is a poorly understood process during which competent cells respond to inducing conditions, allowing the development of somatic embryos. It is important for the regeneration of transgenic plants, including for soybean (Glycine max). We report here that constitutive expression of soybean orthologs of the Arabidopsis (Arabidopsis thaliana) MADS box genes Agamous-like15 (GmAGL15) and GmAGL18 increased embryogenic competence of explants from these transgenic soybean plants. To understand how GmAGL15 promotes SE, expression studies were performed. Particular genes of interest involved in embryogenesis (abscisic acid-insensitive3 and FUSCA3) were found to be directly up-regulated by GmAGL15 by using a combination of quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation. To look more broadly at changes in gene expression in response to GmAGL15, we assessed the transcriptome using the Affymetrix Soybean Genome Array. Interestingly, the gene expression profile of 35Spro:GmAGL15 explants (0 d in culture) was found to resemble nontransgenic tissue that had been induced for SE by being placed on induction medium for 3 d, possibly explaining the more rapid SE development observed on 35Spro:GmAGL15 tissue. In particular, transcripts from genes related to the stress response showed increased transcript accumulation in explants from 35Spro:GmAGL15 tissue. These same genes also showed increased transcript accumulation in response to culturing nontransgenic soybean explants on the medium used to induce SE. Overexpression of GmAGL15 may enhance SE by making the tissue more competent to respond to 2,4-dichlorophenoxyacetic acid induction by differential regulation of genes such as those involved in the stress response, resulting in more rapid and prolific SE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AGAMOUS-Like15 Promotes Somatic Embryogenesis in Arabidopsis and Soybean in Part by the Control of Ethylene Biosynthesis and Response1[C][W][OA]

Many of the regulatory processes occurring during plant embryogenesis are still unknown. Relatively few cells are involved, and they are embedded within maternal tissues, making this developmental phase difficult to study. Somatic embryogenesis is a more accessible system, and many important regulatory genes appear to function similar to zygotic development, making somatic embryogenesis a valua...

متن کامل

AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response.

Many of the regulatory processes occurring during plant embryogenesis are still unknown. Relatively few cells are involved, and they are embedded within maternal tissues, making this developmental phase difficult to study. Somatic embryogenesis is a more accessible system, and many important regulatory genes appear to function similar to zygotic development, making somatic embryogenesis a valua...

متن کامل

Gene Regulation by the AGL15 Transcription Factor Reveals Hormone Interactions in Somatic Embryogenesis.

The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)A...

متن کامل

Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15.

AGAMOUS-Like15 (AGL15) is a MADS domain transcriptional regulator that promotes somatic embryogenesis by binding DNA and regulating gene expression. Chromatin immunoprecipitation (ChIP) analysis previously identified DNA fragments with which AGL15 associates in vivo, and a low-throughput approach revealed a role for AGL15 in gibberellic acid catabolism that is relevant to embryogenesis. However...

متن کامل

The MADS-Domain Factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, Are Necessary to Block Floral Gene Expression during the Vegetative Phase1[W][OPEN]

Multiple factors, including the MADS-domain proteins AGAMOUS-LIKE15 (AGL15) and AGL18, contribute to the regulation of the transition from vegetative to reproductive growth. AGL15 and AGL18 were previously shown to act redundantly as floral repressors and upstream of FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana). A series of genetic and molecular experiments, primarily focused on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 164 3  شماره 

صفحات  -

تاریخ انتشار 2014